Neutrophil Extracellular Traps Reprogram IL-4/GM-CSF-Induced Monocyte Differentiation to Anti-inflammatory Macrophages

نویسندگان

  • Anderson B. Guimarães-Costa
  • Natalia C. Rochael
  • Fabiano Oliveira
  • Juliana Echevarria-Lima
  • Elvira M. Saraiva
چکیده

Monocyte-derived dendritic cells (mo-DCs) are essential for the development of a Th1 protective immune response against Leishmania parasites. It is well known that IL-4 and GM-CSF drive differentiation of human monocytes to dendritic cells (DCs). Here, we investigate if neutrophil extracellular traps (NETs) disrupt this process. NETs-enriched supernatants, generated after human neutrophil activation by Leishmania promastigotes, were added to monocytes and differentiation monitored by expression of molecules associated with macrophage and DCs phenotypes, cytokine production, and parasite killing. We found that NETs addition to IL-4/GM-CSF-treated monocytes prevented then to fully differentiate into DCs. No effect was observed if NETs were treated with DNase or by filtering the traps. Moreover, NETs closely interact with monocytes and downregulate the expression of the IL-4 receptor, which in turn disrupts fully differentiation of monocytes into DCs. Neutrophil elastase inhibition rescues the monocytes to DCs differentiation. Monocytes cultured with IL-4/GM-CSF and NETs differentiated into macrophages, as observed by the increased expression of CD68, CD32, and CD163, and decreased expression of CD80. Moreover, NET addition to IL-4/GM-CSF-treated monocytes rendered these cells less efficient to kill Leishmania parasites. Altogether, our results show that NETs interfere with IL-4/GM-CSF driven differentiation, reprogramming the generation of mo-DCs to an anti-inflammatory macrophage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps.

Pseudogout is an autoinflammatory condition triggered by calcium pyrophosphate dehydrate (CPPD) crystal deposition in the joints. The innate immune system is irritated by and responds to the presence of the crystals with an inflammatory response. The synovial fluid contains activated inflammatory macrophages and neutrophil granulocytes. Several details of crystal-induced macrophage activation w...

متن کامل

Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages.

Human monocytes differentiate into dendritic cells (DCs) or macrophages according to the nature of environmental signals. Monocytes stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin 4 (IL-4) yield DCs. We tested here whether interferon-gamma (IFN-gamma), a potent activator of macrophages, may modulate monocyte differentiation. Addition of IFN-gamma to IL...

متن کامل

An optimized Protocol for Human M2 Macrophages using M-CSF and IL-4/IL-10/TGF-β Yields a Dominant Immunosuppressive Phenotype

Monocytes are highly abundant circulatory effector cells and play a vital role in driving or resolving inflammatory processes depending on their activation phenotype. We investigated and compared a panel of polarization protocols of blood-derived monocytes to achieve a stable, optimal and effective regimen for in vitro induction of immunosuppressive human macrophages, evaluating their surface r...

متن کامل

The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells.

Notch-mediated cellular interactions are known to regulate cell fate decisions in various developmental systems. A previous report indicated that monocytes express relatively high amounts of Notch-1 and Notch-2 and that the immobilized extracellular domain of the Notch ligand, Delta-1 (Delta(ext-myc)), induces apoptosis in peripheral blood monocytes cultured with macrophage colony-stimulating f...

متن کامل

Interleukin-3 and Granulocyte-Macrophage Colony-stimulating Factor Inhibits Tumor Necrosis Factor (TNF)- -induced Osteoclast Differentiation by Down-regulation of Expression of TNF Receptors 1 and 2*

Osteoclasts, the multinucleated cells that resorb bone, differentiate from hemopoietic precursors of monocyte/ macrophage lineage, which also give rise to macrophages or dendritic cells. In this study we investigated the mechanism by which interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GMCSF) inhibit tumor necrosis factor (TNF)-induced osteoclast differentiation in m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017